# Réactions de précipitation

#### Exercice n°1 (\*)

- 1. On mélange  $0.1 \, mol$  de  $KI_{(s)}$  et  $0.08 \, mol$  de  $Pb\big(NO_3\big)_{2(s)}$  dans un litre d'eau. Quel est l'état final ?
- 2. On dissout  $\mathrm{PbI}_{2(s)}$  dans un litre d'eau. Quelle est sa solubilité ?

Donnée:  $pK_s(PbI_2) = 9$ 

### Exercice n°2 (\*)

Le fluorure de baryum  ${\rm BaF_2}$  est peu soluble dans l'eau ( $pK_s=5,7$ ). L'ion fluorure a un caractère basique dans le couple  ${\rm HF/F^-}$  ( $pK_a=3,2$ ). Calculer la solubilité d'une solution saturée de  ${\rm BaF_2}$  en milieu tamponné :

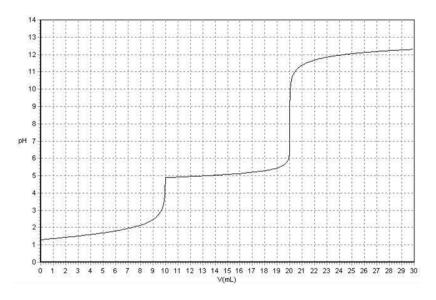
- a. de pH = 1
- b. de pH = 4

#### Exercice n°3 (\*)

Pour chacun des cas ci-dessous, comparer la solubilité calculée à celle du solide ionique dans l'eau pure et conclure.

- a. précipité de  $\operatorname{AgCl}_{(s)}$  dans une solution aqueuse contenant des ions chlorure à la concentration  $C=0.1\ mol.\ L^{-1}$ .
- b. précipité de  $AgCH_3COO_{(s)}$  dans une solution aqueuse acidifiée telle que  $\lceil H_3O^+ \rceil = h = 1 \ mol. \ L^{-1}$ .

Données:  $pK_s(AgCl) = 10$ ;  $pK_s(AgCH_3COO) = 2.7$ ;  $pK_a(CH_3COOH/CH_3COO^-) = 4.2$ 


## Exercice n°4 (\* \*)

Les ions  $\mathrm{Mg^{2+}}$  forment un complexe soluble  $[\mathrm{MgY}]^{2-}$  avec l'EDTA, noté  $\mathrm{Y^{4-}}$  (ion éthylènediaminetétraacétate) de constante de formation  $\beta=10^{8.8}$ . Le produit de solubilité  $K_s$  de l'hydroxyde de magnésium  $\mathrm{Mg(OH)}_{2(s)}$  est pris égale à  $K_s=10^{-10.6}$ . On introduit  $10^{-2}\ mol$  d'hydroxyde de magnésium solide dans  $100\ mL$  d'eau. On ajoute ensuite progressivement une solution très concentrée de  $\mathrm{Na_4Y}$ , sel entièrement dissocié en ions. On observe la solubilisation totale du précipité. Dans ce exercice, on ne prend pas en compte les propriétés acido-basique de l'ion  $\mathrm{Y^{4-}}$ .

- 1. Donner l'équation de la réaction de dissolution de ce précipité. Calculer la constante d'équilibre associée à cette réaction.
- 2. Quelle quantité minimum en ions éthylènediaminetétraacétate a-t-on introduit pour observer la disparition du solide ?

### Exercice n°5 (\* \*)

On réalise le titrage PH-métrique de  $V_0=10\ mL$  d'une solution d'acide nitrique  $HNO_3$ , acide fort, et de nitrate de cuivre (II)  $Cu(NO_3)_2$  par de la soude NaOH à la concentration  $0.1\ mol.\ L^{-1}$ . La courbe de titrage obtenue est la suivante :



- 1. En analysant la solution, écrire les équations des deux réactions ayant lieu au cours de ce titrage et calculer leurs constantes d'équilibre.
- 2. Quel est l'ordre de réalisation des deux réactions précédentes ? Justifier.
- 3. À partir d'une lecture graphique des volumes équivalents, calculer la concentration  $C_1$  de la solution initiale en acide nitrique et calculer la concentration  $C_2$  de la solution initiale en ions cuivre (II).
- 4. Retrouver par le choix judicieux d'un point de la courbe, la valeur du produit de solubilité de  $Cu(OH)_{2(s)}$ .

Donnée: à  $T = 298 \ K \ K_s \left( \text{Cu(OH)}_2 \right) = 10^{-20}$ 

### Exercice n°6 (\* \*)

La très grande toxicité des ions fluorure s'explique par la formation d'un composé très stable avec le calcium, la fluorine  $CaF_{2(\varsigma)}$ .

- 1. Calculer la solubilité du fluorure de calcium dans l'eau pure.
- 2. Dans  $100 \, mL$  d'une solution de nitrate de calcium  $\left(\mathrm{Ca^{2+},2NO_3^-}\right)$  de concentration  $10^{-2} \, mol.\, L^{-1}$ , combien de gouttes de solution de fluorure de sodium  $\left(\mathrm{Na^+,F^-}\right)$  de concentration  $10^{-1} \, mol.\, L^{-1}$  faut-il ajouter pour que le fluorure de calcium solide apparaisse dans la solution ?
- 3. Dans 100~mL de solution de nitrate de calcium à  $10^{-1}~mol.L^{-1}$ , on verse 100~mL d'une solution de fluorure de sodium à  $10^{-1}~mol.L^{-1}$ . On ajoute alors sans variation de volume,  $10^{-2}~mol$  de nitrate de baryum. La solution finale contient-elle  ${\rm BaF}_{2(s)}$ ?

Données:  $pK_s(CaF_2)=10.5$ ;  $pK_s(BaF_2)=6$ ;  $V_{goutte}\approx 40~\mu L$